Huneke-Wiegand conjecture and change of rings

S. Goto, R. Takahashi, N. Taniguchi, and H. L. Truong

Mathematical Society of Japan at Gakushuin University

March 15, 2014

Introduction

Introduction

- R an integral domain
- 2 M, N finitely generated torsionfree R-modules

Question

When is the tensor product $M \otimes_R N$ torsionfree?

Auslander–Reiten conjecture ([2])

Let R be a commutative Noetherian ring, M a finitely generated R-module. If $\operatorname{Ext}_R^i(M,M\oplus R)=(0)$ for i>0, then M is projective.

Huneke-Wiegand conjecture ([5])

Let R be a Gorenstein local domain. Let M be a maximal C-M R-module. If $M \otimes_R \operatorname{Hom}_R(M,R)$ is torsionfree, then M is free.

3 / 17

Consider the following assertions.

- (1) (HWC) holds for Gorenstein local domains.
- (2) (HWC) holds for one-dimensional Gorenstein local domains.
- (3) (ARC) holds for Gorenstein local domains.

Then the implications $(1) \iff (2) \implies (3)$ hold.

Conjecture 1.2

Let R be a Gorenstein local domain with dim R=1 and I an ideal of R. If $I\otimes_R \operatorname{Hom}_R(I,R)$ is torsionfree, then I is principal.

In my lecture we are interested in the question of what happens if I replace $\operatorname{Hom}_R(I,R)$ by $\operatorname{Hom}_R(I,K_R)$.

Conjecture 1.3

Let R be a C-M local ring with dim R=1 and assume $\exists K_R$. Let I be a faithful ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsionfree, then $I \cong R$ or K_R as an R-module.

Conjecture 1.2

Let R be a Gorenstein local domain with dim R=1 and I an ideal of R. If $I \otimes_R \operatorname{Hom}_R(I,R)$ is torsionfree, then I is principal.

In my lecture we are interested in the question of what happens if I replace $\operatorname{Hom}_R(I,R)$ by $\operatorname{Hom}_R(I,\mathsf{K}_R)$.

Conjecture 1.3

Let R be a C-M local ring with dim R=1 and assume $\exists K_R$. Let I be a faithful ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, K_R)$ is torsionfree, then $I \cong R$ or K_R as an R-module.

Contents

Introduction

- Introduction
- Main results
- Numerical semigroup rings and monomial ideals
- Examples

6 / 17

Notation

In what follows, unless other specified, we assume

- (R, \mathfrak{m}) a C-M local ring, dim R=1
- \supseteq \exists a canonical module K_R of R
- $M^{\vee} = \operatorname{Hom}_{R}(M, K_{R})$ for each R-module M
- \bullet $\mu_R(M) = \ell_R(M/\mathfrak{m}M)$ for each R-module M

Main results

Theorem 2.1 (Main Theorem)

Let I be a faithful ideal of R.

(1) Assume that the canonical map

$$t: I \otimes_R I^{\vee} \to K_R, \ x \otimes f \mapsto f(x)$$

is an isomorphism. If $r, s \ge 2$, then e(R) > (r+1)s > 6, where $r = \mu_R(I)$ and $s = \mu_R(I^{\vee})$.

(2) Suppose that $I \otimes_R I^{\vee}$ is torsionfree. If e(R) < 6, then $I \cong R$ or K_R .

Corollary 2.2

Let R be a C-M local ring with dim R > 1. Assume that R_n is Gorenstein and $e(R_n) \le 6$ for every height one prime \mathfrak{p} . Let I be a faithful ideal of R. If $I \otimes_R \operatorname{Hom}_R(I,R)$ is reflexive, then I is principal.

Corollary 2.2

Let R be a C-M local ring with dim R > 1. Assume that R_n is Gorenstein and $e(R_n) \le 6$ for every height one prime \mathfrak{p} . Let I be a faithful ideal of R. If $I \otimes_R \operatorname{Hom}_R(I,R)$ is reflexive, then I is principal.

Corollary 2.3

Let R be a Gorenstein local ring with dim R=1 and e(R) < 6. Let I be a faithful ideal of R. If $I \otimes_R \operatorname{Hom}_R(I,R)$ is torsionfree, then I is principal.

Theorem 2.4

Let (R, \mathfrak{m}) be a C-M local ring with dim R=1 and assume that $\mathfrak{m}\overline{R}\subseteq R$. Let I be a faithful fractional ideal of R. If $I\otimes_R I^\vee$ is torsionfree, then $I\cong R$ or K_R .

Theorem 2.5

Let R be a C-M local ring with dim R=1. Assume $\exists K_R$ and v(R)=e(R). Let I be a faithful ideal of R. If $I\otimes_R I^\vee\cong K_R$, then $I\cong R$ or K_R .

Let k be a field.

Proposition 2.6

Let $R = k[[t^a, t^{a+1}, \dots, t^{2a-1}]]$ $(a \ge 1)$ be the semigroup ring and let $I \neq (0)$ be an ideal of R. If $I \otimes_R I^{\vee}$ is torsionfree, then $I \cong R$ or K_R .

Corollary 2.7

Let $R = k[[t^a, t^{a+1}, \dots, t^{2a-2}]]$ ($a \ge 3$) be the semigroup ring and let I be an ideal of R. If $I \otimes_R \operatorname{Hom}_R(I,R)$ is torsionfree, then I is principal.

Numerical semigroup rings

Setting 3.1

Let
$$0 < a_1 < a_2 < \dots < a_\ell \in \mathbb{Z}$$
 such that $\gcd(a_1, a_2, \dots, a_\ell) = 1$.
We set $H = \langle a_1, a_2, \dots, a_\ell \rangle = \{ \sum_{i=1}^\ell c_i a_i \mid 0 \le c_i \in \mathbb{Z} \}$ and $R = k[[t^{a_1}, t^{a_2}, \dots, t^{a_\ell}]] \subset V = k[[t]]$.

Numerical semigroup rings

Notice that $e(R) = a_1 = \mu_R(V)$.

Definition 3.2

Let I be a fractional ideal of R. Then I is said to be a monomial ideal, if $I = \sum_{n \in \Lambda} Rt^n$ for some $\Lambda \subseteq \mathbb{Z}$.

4 D > 4 D > 4 B > 4 B > B 9 9 9

Let R be a numerical semigroup ring with $e(R) \leq 7$. Let I be a monomial ideal of R. If $I \otimes_R I^{\vee}$ is torsionfree, then $I \cong R$ or K_R .

Theorem 3.3

Let R be a numerical semigroup ring with $e(R) \le 7$. Let I be a monomial ideal of R. If $I \otimes_R I^{\vee}$ is torsionfree, then $I \cong R$ or K_R .

Corollary 3.4

Let R be a Gorenstein numerical semigroup ring with $e(R) \le 7$ and let I be a monomial ideal of R. If $I \otimes_R \operatorname{Hom}_R(I, R)$ is torsionfree, then I is principal.

Examples

Let I be a monomial ideal of R. Set $J = K_R : I$. Condition: $IJ = K_R$ and $\mu_R(K_R) = 4$.

Example 4.1

Let $R = k[[t^8, t^{11}, t^{14}, t^{15}]]$. Then $K_R = (1, t, t^3, t^4)$. We take I = (1, t) and set $J = K_R : I$. Then $J = (1, t^3)$, $IJ = K_R$ $\mu_R(\mathsf{K}_R) = 4$, but

$$T(I \otimes_R J) = R(t \otimes t^{16} - 1 \otimes t^{17}) \cong R/\mathfrak{m}.$$

Remark 4.2

In the ring R of Example 4.1 $\not\exists$ monomial ideals I such that $I \ncong R, I \ncong K_R$, and $I \otimes_R I^{\vee}$ is torsionfree.

4 D > 4 A > 4 B > 4 B >

If e(R) > 9, then **Conjecture 1.3 is not true** in general.

Example 4.3

Let $R = k[[t^9, t^{10}, t^{11}, t^{12}, t^{15}]]$. Then $K_R = (1, t, t^3, t^4)$. Let I=(1,t) and put $J=K_R:I$. Then

$$J = (1, t^3), IJ = K_R, \text{ and } \mu_R(K_R) = 4,$$

but $I \otimes_R I^{\vee}$ is torsionfree.

References

- [1] M. Auslander, *Modules over unramified regular local rings*, Illinois J. Math. **5** (1961), 631–647.
- [2] M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc., 52(1975), 69–74.
- [3] O. Celikbas and H. Dao, *Necessary conditions for the depth formula over C–M local rings*, J. Pure Appl. Algebra (to appear).
- [4] O. Celikbas and R. Takahashi, *Auslander–Reiten conjecture and Auslander–Reiten duality*, J. Algebra **382** (2013), 100–114.
- [5] C. Huneke and R. Wiegand, *Tensor products of modules, rigidity and local cohomology*, Math. Scand. **81** (1997), 161–183.

